
IEEE TRANSACTIONS ON COMPUTERS, VOL. c-33, NO. 10, OCT[OBER 1984

M R

I I I I I

x X XX * Xn Xn

xin s enable QI
12X

XMd nble Qm
XIm2Xm

xj { xi x1 xX } I < i < m , 1 5 i S 3

Fig. 1. Generic machine built by construction algorithm.

that BE is satisfiable if and only if there exists an encoding that
enables {Q..... ,Qm}.

Proof: Assume that BE is satisfiable, and let yi, * * -, yn be a
satisfying truth-value assignment to the variables xl, * *x,, of BE.
Then assign yi to MIR[i] (1 - i - n).
The converse argument is analogous.

VI. SUMMARY
We have shown that the problem of deciding whether an arbitrary

set of MO's can be encoded in a single MI is NP-complete. The
proof relies on the use of an MIR encoding scheme closely related
to indirect encoded control or bit steering, in which multiple MIR
fields enable MO's. The bit steering technique is used in the RCA
Spectra 70, Honeywell H1700, and IBM 360 computers [2].

It should be noted that in the machine built by the construction
algorithm, the execution of each MO was determined by the values
of up to three single-bit MIR fields. The general problem of satis-
fiability is solvable in polynomial time when the number of vari-
ables in each clause is at most 2 [7]. Thus, it is easy to see that for
direct encoded control, where MO's are enabled by a single field,
or bit steering in which each MO is enabled by at most two fields,
the problem can be solved efficiently. This provides some direction
for the design of control word structures, a problem addressed, for
example, in [6].

ACKNOWLEDGMENT
The authors wish to thank the anonymous referees for their help-

ful comments which improved this correspondence and S. R.
Vegdahl for simplifying the proof.

REFERENCES

[1] A. K. Agrawala and T. G. Rausher, Foundations ofMicroprogramming:
Architecture, Software, andApplications. New York: Academic, 1976.

[2] M. Andrews, Principles of Firmware Engineering in Microprogram
Control. Potomac, MD: Computer Science Press, 1980.

[3] U. Banerjee, S. Shen, D. J. Kuck, and R. A. Towle, "Time and parallel
processor bounds for Fortran-like loops," IEEE Trans. Comput.,
vol. C-28, Sept. 1979.

[4] S. A. Cook, "The complexity of theorem-proving procedures," in
Proc. 3rd ACM Symp. Theory of Computing, New York, NY, 1971,
pp. 151-158.

[5] S. Dasgupta, "The organization of microprogram stores," Computing
Surveys, vol. 11, pp. 39-65, Mar. 1979.

[6] D. J. DeWitt, "A machine-independent approach to the production of
optimal horizontal microcode," Ph.D. dissertation, Dep. Comput. and
Commun. Sci., Univ. Michigan, Ann Arbor, 1976.

[7] S. Even, A. Itai, and A. Shamir, "On the complexity of timetable and
multicommodity flow problems," SIAM J. Comput., vol. 5,
pp. 691-703, 1976.

[8] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory ofNP-Completeness. San Francisco, CA: Freeman, 1979.

[9] D. Landskov, S. Davidson, B. Shriver, and P. W. Mallett, "Local
microcode compaction techniques," ACM Comput. Surveys, vol. 12,
pp. 261-294, Sept. 1980.

[10] P. W. Mallett, "Methods of compacting microprograms," Ph. D. dis-
sertation, Dep. Comput. Sci., Univ. Southwestern Louisiana, Lafayette,
Dec. 1978.

[11] E. L. Robertson, "Microcode bit optimization is NP-complete," IEEE
Trans. Comput., vol. C-28, pp. 316-319, Apr. 1979.

[12] M. Sint, "MIDL-A microinstruction description language," in Proc.
14th Microprogramming Workshop, Chatham, MA, Oct. 1981,
pp. 95-108.

[13] S. R. Vegdahl, "Phase coupling and constant generation in an optimizing
microcode compiler," in Proc. 15th Microprogramming Workshop, Palo
Alto, CA, Oct. 1982, pp. 125-133.

[14] ,"Local code generation and compaction in optimizing microcode
compilers," Ph. D. dissertation, Carnegie-Mellon Univ., Pittsburgh,
PA, 1982.

Routing Algorithms for Cellular Interconnection Arrays

A. YAVUZ ORUC AND DEEPAK PRAKASH

Abstract -The paper describes an algebraic model which provides a
means for realizing an arbitrary permutation through various cellular-
array-type networks. The model views a cellular array as an ordered set
of transposition maps where each transposition corresponds to a per-
mutation cell of the array. A permutation realizable by such an array is
then expressed as a composition of the transpositions where the rules for
the composition are determined by the topology of the array.

Index Terms- Cellular interconnection arrays, cycle, interconnection
networks, monotone increasing factorization, permutation, transposition.

I. INTRODUCTION
This paper focuses on a class of interconnection networks referred

to as cellular interconnection arrays [1], [2]. Typically, a cellular
interconnection array is a geometric pattern of interconnected
switching cells with identical switching capabilities. Kautz et al.
utilized the elementary permutation cell shown in Fig. 1 to build a
number of different cellular arrays [1]. These include triangular,
diamond, rectangular, pruned rectangular, rhomboidal, square, and
almost square arrays. It is known that these interconnection arrays
are all rearrangeable, that is, each one can realize an arbitrary
permutation of its inputs onto its outputs.

Almost all cellular interconnection arrays of n inputs have 0 (n 2)
cost complexity, which compares infavorably to 0 (n log n) of
multistage networks such as Baseline [3], Omega [4], and Indirect
Binary Cube networks [5]. Nevertheless, the regularity of the
structure of cellular interconnection arrays allows for a modular
interconnection network synthesis and makes them attractive for
VLSI implementation. In addition, cellular arrays are all one-pass
networks, while the best known bound for baseline-type networks is
two passes [6].

Manuscript received July 7, 1983; revised January 16, 1984.
The authors are with the Department of Electrical, Computer and Systems

Engineering, Rensselaer Polytechnic Institute, Troy, NY 12181.

0018-9340/84/1000-0939$01.00 © 1984 IEEE

939

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 30, 2009 at 13:59 from IEEE Xplore. Restrictions apply.

94;EFE TRANSACTIONS ON COMPUTERS, VOL. c-33, NO. 10, OCTOBER 1984

x ~ ~ ~ xx x x
Identity Transposition
State State

I y P Y

Fig. 1. The permutation cell.

An important task associated with cellular interconnection arrays
is developing routing algorithms to realize arbitrary permutations by
such arrays. This problem was addressed by Kautz et al. [1].
However, no formal algorithm has been provided. Here we present
algorithms based on an algebraic representation of such arrays. A
possible approach is to make use of the topological equivalence
which exists between cellular permutation arrays and primitive
sorting networks [7]. However, a sorting network requires more
complex cells; each cell behaves as a comparator and an exchange
switch. Moreover, a sorting network has a fixed interconnection
structure which allows permuting only via data tagging. The algo-
rithms provided here do not require these conditions.
The paper is organized as follows. In Section II, basic notation

and algebraic preliminaries are presented. In Section III, we pro-
vide an algebraic modeling for triangular arrays, and using this
model, we develop an algorithm to realize arbitrary permutations by
such arrays. In Section IV, we consider diamond arrays and provide
a routing algorithm for such arrays. In Section V, we discuss the
modeling of other cellular arrays and the ways of setting them up to
realize arbitrary permutations.

II. ALGEBRAIC PRELIMINARIES
In the following sections, we shall present a correspondence be-

tween a set of permutations and a cellular interconnection array.
This section describes the notation and other algebraic facts to
establish this correspondence.

Let S be a set of r symbols. A permutation p on a set S is a
one-to-one mapping of S onto itself. We shall write (x)p = y to
mean that the permutation p moves x to y where x, y E S. For
convenience, the elements of S are identified as integers 1, 2, * *, r.
The permutation e defined by (x)e = x for all x E S is called the
identity permutation.
A common notation, called the cycle notation, will be used to

represent permutations. A finite cycle c = (x1x2... Xk) where
xi e S, i = 1,2... k on S is a permutation such that (x,)c =

X2, (X2)C = X3, * * *, (Xk)C = xi. A cycle of k symbols is called a
k-cycle, and in particular, a cycle of two symbols is called a trans-
position. Two cycles are said to be disjoint if they do not have any
elements in common. It is known that every permutation can be
expressed as a product of disjoint cycles, and this product is unique
up to the order of its factors.

The composition of two permutations p, q on a set S, denoted pq,
is also a permutation on S defined by (x)pq = ((x)p)q for each
x e S. The following facts for composing cycles follow directly
from the definition of a composition map.
Rule 1 : (X1x2 . *Xi-I XiXi+ .I

. * Xk) = (xIx2 . .* Xi-lXil* Xk)
(Xi Xi+ I).
Rule 2: (X1x2 . . .Xi- XiXi+ I

. . Xj . .Xk) = (xjxj+
XkXIX2 ... Xi- 1) (XiXi+ I.* (Xj- 1) where j > i + 1.

In what follows, we shall use these rules to realize arbitrary
permutations by cellular arrays.

III. TRIANGULAR ARRAYS
A cellular triangular permutation array of size n (shown in Fig. 2

for n = 8) is a triangular array of n (n - 1)/2 interconnected per-
mutation cells. A typical cell depicted in Fig. 1 is capable of map-
ping its inputs x, y onto its outputs x, y according to either of the two
permutations indicated by the figure. It can be easily verified that a

1

2

3

Fig. 2. Triangular array, n = 8.

213+ 41
1

4

Fig. 3. A triangular array realizing (13).

triangular array such as the one shown in Fig. 3 realizes the trans-
position with which a permutation cell is associated if all the cells
but that cell are set to the identity permutation. Thus, the triangular
array of Fig. 3 realizes the transposition (1 3).
Given the above correspondence between a triangular array and

a set of transpositions, we can develop an algorithm to realize
arbitrary permutations. First we state the following definitions.

Definition 1: The transposition (x y) associated with the cell
(x y) of a triangular permutation array where x < y is said to

precede the transposition (w z) associated with the cell (w z) of the
same network where w < z and is denoted as (x y) c (w z)
if either: a) {x, y} fn {w,z} = o, or b) y < z, or c) y = z and
x < w.

For example, in Fig. 2, (1 3) < (1 6) since 3 < 6. Also, (2 4)
(3 4) since 2 < 3.

Definition 2: A product of transpositions (xi y) (x2 Y2) ... (Xr Y,)
is said to be monotone increasing if (xi y') ' (xi+I yi+) for all
i;1' i r - 1.

Clearly, a permutation of the inputs of a triangular permutation
array is realizable by the array iff it can be factored into a monotone
increasing product of transpositions. Moreover, since every trian-
gular permutation array is rearrangeable, every permutation, and
hence every cycle of the array, must have at least one factorization
into a monotone increasing product of transpositions. Consider the
network of Fig. 2 and the cycle (1 4 5 7 2). It can be factored as

follows.

940

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 30, 2009 at 13:59 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS, VOL. c-33, NO. 10, OCTOBER 1984

(1 4 5 7 2) = (1 4 5 2)(2 7)

= (1 4 2)(2 5) (2 7)

Rule 1

Rule 1

= (1 2) (2 4) (2 5) (2 7) Rule 1 .

It is easily seen that (1 2) (2 4) (2 5) (2 7) is a monotone in-
creasing sequence ((1 2) ' (2 4) ' (2 5) - (2 7)), and thus is
realizable by the array of Fig. 2. The steps carried out in this ex-
ample can be generalized into the following algorithm.
Algorithm 1: Let S = {xl, X2, Xk} and c = (X1X2 ..*Xk)-
1) Il = C, p2 = e.
2) Let xm = max (S); that is, xm is the largest element in S.
3) Rewrite pi as pi = (XmXm+ I ... XkX1X2 ... Xm-1).
4) Using Rule 1), let

pi = (Xm+I. XkXIX2 .Xm-1) (Xm+Xm)

PI = (Xm+ ... XkX1X2... xm- 1); P2 = (Xm+ Xm) P2

5) S = S - {Xm}e
6) If |S| > 2, go to step 2).
7) c :=p2.
It is seen that the algorithm is based on the factorization of a

cycle of i symbols into a cycle of i - 1 symbols, and a trans-
position starting with i = k and proceeding with i = k - 1,
i = k - 2, , i - 3 with the provision that the factored trans-
position is defined over the largest symbol in the cycle and the one
which is to the right of the largest symbol. This condition guarantees
that the following two events occur simultaneously.

1) The algorithm always chooses the greatest transposition
among all available ones.

2) The other cycle in the factorization no longer contains the
largest symbol.

It then follows that the final factorization will be a monotone
increasing product of transpositions. We conclude that given an
arbitrary cycle, the algorithm always leads to a monotone increasing
factorization of the cycle.
The algorithm described above can be used to realize an arbitrary

permutation of n symbols by a triangular array of size n. Recall that
any permutation is a product of disjoint cycles, and the product is
unique up to the order of its factors. Thus, if p = cl c2 * Ck where
ci are pairwise disjoint cycles, we use the algorithm for each cycle
to obtain a monotone increasing factorization. Since the cycles
do not have any element in common, the substitution of the
factorizations into the product CC2*2... C2 also yields a monotone
increasing product. As an example, let S = {1, 2, 10} and
p = cIc2c3 where

c = (7 4 6), c2 = (3 1 8 10), c3 = (5 2 9)

Using the algorithm,

C = (46) (4 7),c2 =(1 3) (3 8) (3 10),c3 =(25) (59).

Thus,

p = (46) (47) (l 3) (3 8) (3 10) (25) (5 9)

which is clearly a monotone increasing sequence of transpositions.
It is interesting to estimate the order of comnplexity of

Algorithm 1. Let p = cICc2... Ck where ci is a cycle of ni symbols
for i = 1, 2 * k. It can be seen that the complexity of factorizing
cycle ci is the same as the complexity of sorting a list of ni elements,
which at best is ni log2 ni. Thus, factorizing p into a monotone
increasing sequence of transpositions requires a complexity of

ni log2ni 5 n log2 n.
1-isk

IV. DIAMOND ARRAYS
Another type of cellular permutation array is a diamond array

which is also capable of realizing all possible permutations of its
inputs onto its outputs [1]. A diamond array of size eight is depicted
in Fig. 4. The labels inside the cells are the transpositions with
which they are associated, and the labels underneath each cell are
the pairs of indexes where the first index in each pair designates the
diagonal to which the cell belongs and the other index refers to
the position of the cell in the diagonal. Observe that all possible
transpositions of eight symbols are present on the array. However,
unlike the case of a triangular array, it is not possible to order the
transpositions of a diamond array with respect to its inptit symbols.
Instead, we shall adopt an ordering which is based on the topology
of the array.

Definition 3: The transposition (x y) associated with the switch-
ing cell with index pair (i,j) is said to precede the transposition (w z)
associated with the switching cell with index pair (k, 1), and is denoted
as (x y) -< (w z) if either {x,y} {n w,z}- 0 or i ' k.
The definition provides the criterion for factorizing a permutation

into a monotonic increasing product of transpositions. As an ex-
ample, consider the realization of an arbitrary cycle c by a dia-
mond permutation array. Let c = (1 5 7 2 4 8 3 6). It can be
factorized as follows.

c = (1 5 7 2 4 8 3 6)

= (6 1 5) (7 2 4 8 3) (6 7)

= (6 1 5) (3 7) (2 4 8) (2 3) (6 7)

= (6 1 5) (3 7) (2 8) (4 8) (2 3) (6 7)

Rule 2

Rule 2

Rule 1

= (5 6) (5) (3 7) (2 8) (48) (2 3) (67) Rule 1.

By inspection, the above factorization is monotone increasing, and
hence c is realizable by the diamond array shown in Fig. 4. The
above example can be generalized into the following algorithm.

Algorithm 2: c - (xI x2 .x),r = e (identity permutation),
stack = empty.

1) If c is a transposition r c *r and go to step 6).
2) Let S be the set of all possible transpositions using the symbols

that appear in the cycle c.
3) Let t = (xixj) where i < j be the greatest transposition in

the set S.
4) If (i + 1 =j), then c = pt (by Rule 1)

so let r := t * r and c :=p.
else c = qpt (by Rule 2).

so let r :=t r and c :=p.
push q onto stack

5) go to step I).
6) If (stack is empty), then stop

else c = pop(stack) and go to step 1).
Algorithm 2 is based on the factorization of a cycle c into either

another cycle p followed by a transposition t or into two cycles q
and p followed by t, with the provision that t is the greatest amaong
all possible transpositions of the symbols of c. Then c is replaced by
p and q is pushed into the stack if c = qpt. The algorithm halts after
all the cycles pushed into the stack have been factorized into
transpositions. Suppose that, after some number of iterations,
c = qlq2 q.q"qpt1t2 *. tu and t1t2 ... tv is a monotone increasing
sequence of transpositions. The fact that t1 is greater than any
transposition of the symbols of p or symbols of q follows directly
from step 3) of the algorithm. On the other hand, it is also true that
t1 is greater than any transposition of the symbols of qi; 1 c i . u
since t and qi are disjoint for all i; 1 ' i . u. Clearly, this
argument inductively leads to the assertion that Algorithm 2 always
yields a monotone increasing sequence of transpositions and halts
after that.

941

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 30, 2009 at 13:59 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS, VOL. c-33, NO. 10, OCTOBER 1984

7

Fig. 4. Diamond array, n = 8.

Fig. 5. Rectangular array, n = 8.

Fig. 6. Rhomboidal array, n = 6.

V. RECTANGULAR AND RHOMBOIDAL ARRAYS
The algorithms developed for triangular and diamond arrays can

be used for rectangular and rhomboidal arrays: As Kautz et al.
pointed out, a rectangular array of size n is directly obtained from
a triangular array of size n. As an example, consider the rectangular
array of size eight shown in Fig. 5. It can be formed by first
reflecting the triangle of cells below the dotted line in Fig. 2 about
its hypotenuse, then placing this triangular subarray to the left of the
remainder of the array, and inserting a diagonal of cells set to
the identity permutation between them. It is seen from Figs. 2
and 5 that this transformation does not alter the ordering con-

vention among the transpositions of the triangular array given
in Definition 1. Thus, Algorithm 1 directly applies to rectangular
arrays.

Kautz et al. also demonstrated that after transformation, a diamond
array can be restructured as a rhomboidal array (Fig. 6). Although not
detailed here, it can be shown that this transformation preserves the
ordering in the sense of Definition 3 amQng the transpositions of the
diamond array. Thus, Algorithm 2 can be used directly to realize
arbitrary permutation on rhomboidal arrays.

VI. CONCLUSIONS
The paper has introduced an algebraic representation for cellular

permutation arrays. This representation has been shown to be
a valuable tool for developing algorithms to realize arbitrary
permutations by such interconnection arrays.

REFERENCES

[1] W. H. Kautz et al., "Cellular interconnection arrays," IEEE Trans.
Comput., vol. C-17, pp. 443-451, May 1968.

[2] J. Gecsei, "Interconnection networks from three-state cells," IEEE Trans.
Comput., vol. C-26, pp. 705-711, Aug. 1977.

[3] C. Wu and T. Feng, "On a class of multistage interconnection networks,"
IEEE Trans. Comput., vol. C-29, pp. 694-702, Aug. 1980.

[4] D. K. Lawrie, "Access and alignment of data in an array processor," IEEE
Trans. Comput., vol. C-24, pp. 1145-1155, Dec. 1975.

[5] M. C. Pease, "The indirect binary n-cube multiprocessor array," IEEE
Trans. Comput., vol. C-26, pp. 443-473, May 1976.

[6] C. Wu and T. Feng, "The reverse exchange network," IEEE Trans.
Comput., vol. C-29, pp. 801-810, Sept. 1980.

[7] D. E. Knuth, The Art of Computer Programming, Vol. 3, Sorting and
Searching. Reading, MA: Addison-Wesley, 1973.

942

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 30, 2009 at 13:59 from IEEE Xplore. Restrictions apply.

